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Abstract

To thoroughly test the on-board software for the MSTI 2 spacecraft, it was necessary to generate an envi-
ronment for the software which accurately simulated the on-orbit conditions of the spacecraft. To achieve
this, the MSTI 2 Processor-In-the-Loop (PIL) high-fidelity simulator was developed. The entire development
was completed in 3 months, and required 4 man-months of effort. This paper describes the design and
development of this simulator, and the methodology employed.

Introduction

Thorough testing of the MSTI 2 on-board software required that the software be placed in an environment
which accurately reproduces the conditions which the software will encounter while it is on orbit. This was
achieved by using a flight processor with flight I/0 boards, in conjunction with an AC-100 real-time simulator
(see Figure 1). The unmodified on-board software was loaded onto the flight processor, and the I/O boards
were utilized in their flight configuration. The AC-100 captured the output signals from the /O boards,
updated its simulation accordingly, and emitted the input signals to the flight processor. This process
occurred in real time.
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Figure 1

This paper discusses the design of the PIL, includigg an architectural overview, 'ahd the development of the
PIL, including the methodology which was employed for rapid development. This paper focuses on the
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real-time simulator, running on the AC-100, which emulated the on-orbit environment. The flight processor
and the on-board software are not discussed in detail in this paper.

Qverview

The MSTI 2 PIL provided a real-time simulation of the spacecraft environment for testing the on-board
software running real-time on the flight Erocessor (see Figure 2). The primary task of the MSTI 2 on-board
software was attitude control, so the PIL was limited primarily to those functions relating to the Attitude
Control System (ACS). The subsystems which were emulated by the AC-100 include attitude dynamics,
ACS sensors and actuators, and orbit dynamics.
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Figure 2

The PIL was designed to provide a realistic environment for the on-board software which accurately emu-
lates the interactions between the processor and the rest of the spacecraft. The interfaces between the
processor and the AC-100 were restricted to the ACS sensors and actuators, because these are the only
ACS interfaces on the spacecraft available to the flight processor. The AC-100 intercepted those com-
mands generated by the flight processor which were intended for the ACS actuators, and passed these
commands to the spacecraft models. These models processed the commands, and the propagated
dynamical subsystems, in order to generate realistic ACS sensor data. This data was passed along to the
AC-100 output hardware, which emulated the electrical characteristics of the sensors.

The simulator hardware includes the AC-100 off-the-shelf real-time simulator, the custom /0 boards for the
AC-100, and the host workstation. The simulator software includes the development environment, the
automatically ?_enerated software, and the handwritten C code. In addition, a dynamics analysis software
prograbm, Pt"uto ev, was used to develop the attitude equations of motion and generate the attitude dynam-
ics subroutines.

The AC-100 System
As indicated in Figure 2, the hardware in the PIL consists of the AC-100 real-time simulator, the host work-

station, and the custom /O electronics boards in the AC-100. The PIL software consists of the
Matrix /SystemBuild development environment, the automatically generated C code, the custom hardware
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interface routines, and the C code reused from other projects.

Matrix,/SystemBuild is a single program which provides two environments: Matrix, and SystemBuild.
Matrix, provides a command line environment for numerical design and analysis, while SystemBuild is an
environment which allows the user to model systems with block diagrams, and then simulate the systems

directly from the block diagrams. The results of the simulations can be analyzed in the Matrix, environment.

As an example, Figure 3 shows a block diagram from the earth sensor subsystem. The data flow is indi-
cated by the interconnections between the blocks, and the operations on the data are indicated by the
blocks. “Figure 3 shows gain blocks, data path switches, logic blocks, trigonometric blocks, and others.
Many other blocks are available in the SystemBuild environment. The block labeled "ES Blanking Logic" is
a Superblock, and within it is an entire subsystem, which is in tumn built of blocks and superblocks. The
superblocks can be nested in this way without limit.
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Figure 3

AutoCode converts the block diagrams develo(g)ed under SystemBuild directly into real-time executable C
code, which can be downloaded to the AC-100 real-time processor, or any other real-time processor. 1A is
a graphical environment which allows the user to build control panels to provide real-time interaction with
the simulations executing on the AC-100. ’

The develcgpment of the PIL simulator software be%an under the Matrix,/SystemBuild environment, starting
with the MSTI 1 PIL models. In this environment, the various S/C subsystems were modeled usin%block
diagrams. While in this environment, individual subsystems, or the entire spacecraft model, could be simu-
lated non-real-time. Because the block diagrams could be simulated on the host workstation, it was
possible to develop and debug the spacecraft models without needing to develop source code, and without
porting the software to the AC-100 platform.
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Not all of the spacecraft models were in block diagram form. The orbit dynamics models and the sun
ephemeris had already been developed on earlier Projects in handwritten C code, so it was not desirable to
redevelop them. The SystemBuild a capability, called "User Code Blocks", which provides a standardized
interface so that the users handwritten C code can be used within the block diagrams. This provides a
migration path from handwritten software to automatically generated simulations. The existing orbit
dynamics models and sun ephemeris were incorporated into the block diagram this way.

Once the spacecraft block dia%rams were developed and deb:(? ed, they were ready for the code genera-
tion process for execution on the AC-100. AutoCode converted the block diagrams directly into executable
r?al-tnme source code, so moving these block diagrams to the AC-100 required no more than a few min-
utes.

Centain portions of the /O were also readily ported to the AC-100, because the standard I/O capabilities of

the AC-100 are tigggy integrated into the software, so that connecting the AC-100 standard /O was no
more difficult than editing the block diagrams.

Other portions of the MSTI 2 PIL /O had to emulate the specialized interfaces of the various ACS sensors
and actuators, which required custom hardware interfaces to be developed for the AC-100. These hard-
ware interfaces required the development of routines to allow the automaticallg generated code to
communicate with the custom-designed /O boards. These were 5 short C subroutines which called low-
level /O routines which are supplied with the AC-100. These custom routines were developed using the
ordinary compile-link-debug cycle.

In addition, the equations of motion of the spacecraft were developed using AutoLev. This software Fack-
age develops the equations of motion of a dynamical system using Kane's method, and automatically
generates source code to simulate these equations. This code was integrated into the SystemBuild models
as a User Code Block.

Spacecraft Subsystem Models

The models which were implemented in the MSTI 2 PIL included attitude dynamics, a sun sensof, an earth
sensor, low rate gyros, a high rate gyro, thrusters, reaction wheels, orbit dynamics, and sun ephemeris.

The PIL setup operated at 80 Hz, which provided a sufficiently fast response to the on-board code which
was operating at 5 Hz. Throughput testing started by running the models at 20 Hz, and then increasing the
rate. The rate was increased to 120 Hz, and the AC-100 had not overflowed, so testing was stopped. 1t
was decided that operating the model at 80 Hz. would allow a growth in model complexity of 50% or more,
and this rate was more than sufficient for a quick response to the 5 Hz. on-board software.

The 80 Hz. rate of the PIL was also chosen because the on-board software operated at 5 Hz., it was not
necessary to model any phenomena much faster than this. No phenomena which responded faster than
about 0.05 seconds was modeled, and the 80 Hz. rate supported this.

Sun Sensor

The MSTI 2 sun sensor had a square field of view, 64° by 647 in extent. The output of this sensor was two
numbers representing the angular position of the sun in the Field Of View (FOV), a single bit to indicate the
sun is present in the OV, and some housekeeping information. This information was encoded in a data

frame which was transmitted 5 times per second to the processor. This was transmitted on an ordinary
serial data stream, using RS-422 voltage levels. No commands were transmitted from the processor to the

sun sensor.

Figure 4 shows the highest level block diagram of the Sun Sensor model. This model used the outﬁut of
the attitude dynamics models, along with the sun ephemeris model, to com;[t:ute the sensor data. The
model had to check for sun presence in the SS FOV. If the sun was in the field of view, the angles were
calculated, otherwise the default values were used. In addition, the "sun present” bit had to be set property.
The housekeeping information was hard-coded to its default value, and was not variable.

The error models included in the sun sensor model included geometric misalignment of the sensor on the
spacecraft, and a bias on each output angle.
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The data bytes for the serial data stream were formatted in the SystemBuild models, and passed on to the
serial output of the AC-100.

Sun Sensor Block Diagram
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Earth Sensor

The MSTI 2 earth sensor was a scanning horizon sensor with a 60° half-cone angle. Due to the mechani-
cal structure of the sensor, 81° of the scan cone were obstructed.

The outputs of this sensor included two angles, representing the phase and the chord of the earth in the
scan cone. In addition, there were three individual informational bits: one bit indicated the earth was
Bresent in the scan cone, another single bit indicated that the leading edge of the earth chord was blocked

y the obstruction, and the third sinPle bit indicated that the trailing edge of the earth chord was blocked by
the obstruction. This information, along with some housekee ing information, was encoded in a data frame
which was transmitted 5 times per second to the processor. This was transmitted on an ordinary serial data
stream using RS-422 voltage levels. No commands were transmitted from the processor to the earth sen-
sor.

Figure 3 shows the block diagram of the Earth Sensor model. This model used the output of the attitude
dynamics model, along with the orbit dynamics model, to compute the sensor data. If the scan cone inter-
sected the earth, the chord and phase were computed, and the three bits described above, were set
appropriately. If the scan cone did not intersect the earth, the default values for the an%:es were used, and
the default values were used for the blanking bits. The housekeeping information was hard-coded to its
default value, and was not variable.

The error models for the earth sensor included geometric misalignment of the sensor on the spacecraft, and
a bias on each of the angle outputs.

The data bytes for the serial data stream were formatted in the SystemBuild models, and passed on to the
serial output of the AC-100.
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Low Rate Gyro

The primary source of attitude rate information on the MSTI 2 spacecraft was two high accuracy 2-axis
gyros. However, they would saturate at a relatively low angular rate.

Each sensitive axis of each gyro had two pulse streams: one for positive rotation, and one for negative
rotation. Only one of these two pulse streams was active at any moment. The frequency of these pulse
streams was proportional to the angular rate about the sensitive axis. In addition, each pulse stream had a
redundant transmitter for reliability. These pulse streams were transmitted on a RS-422 differential pair.
There were a total of 32 conductors transmitting the gyro data.

There was no housekeeping information transmitted from the gyros to the processor, and there were no
commands transmitted from the processor to the gyros.

The gyro models on the AC-100 used data only from the attitude dynamics models. The error models
included geometric misalignment of the gyro on the spacecraft, and gyro biases.

Because the gyros had to be emulated with very higg precision, and because the gyro outputs were spe-
cialized, it was necessary to build a custom output ard for the AC-100, the GPC board. This board
provided closed-loop control of the frequency. A counter was placed on each pulse stream, and these
counters could be read by the AC-100 to provide a feedback path. The angular rate of the spacecraft about
each gyro axis was integrated over time, and this accumulated value was compared to the counters during
each 80 Hz. step. The frequency of each step was adjusted to make sure that the gyro outputs were never
more than one pulse in error, when compar against the software models. The feedback path allowed the
GPC board to generate smooth pulse trains which were lower than 80 Hz., by shutting down the ulse
stream_agggether during one or more 80 Hz. periods, and only occasionally commanding one pulse to be
transmitted.

Each GPC board could transmit all of the signals coming from one gyro, so 2 GPC boards were required in
the PIL to emulate these gyros.

It was necessary to develop a small handwritten C routine to drive the GPC boards. This routine handled
the feedback control of the GPC board. This routine took the integrated angular rate from the block dia-
grams, and read the feedback counters on the GPC boards. After applyingbappropriate scale factors, the
two values were compared for errors. Any differences were compensated by adjusting the frequency dur-
ing the next 80 Hz cycle. With this feedback scheme, the accumulated errors of the gyro emulators,
compared to the desired values, never exceeded 8 arcseconds.

This interface routine interacted with the hardware by calling simple low-level I/O routines, which are
%uorclldlqu wr‘t(h the AC-100. This routine was incorporated into the SystemBuild block diagram as a User
e Block.

High Rate Gyro

The MSTI 2 spacecraft included one low fidelity 3-axis gyro which had favorable saturation characteristics
in order to handle that portion of the mission in which the spacecraft had high angular rates. The output of
this gyro was three voltage levels, one for each axis. The voltage level was proportional to the angular rate
of the spacecraft about the respective axis. There was no housekeeping information transmitted by this
gyro, and there were no commands from the flight processor to this gyro.

The high rate gyro model used data from the attitude dynamics model to compute the gyro output. The
standard AC-100 configuration includes several digital-to-analog outputs, sO emulating the gyro electrical
interface was quite simple. Using the standard 1/O connection editor, this entire model, along with its /O,
required about one half of a day to implement.

Reaction Wheel Assembly

The MSTI 2 spacecraft had three reaction wheels, one along each primary axis of the spacecraft. These
reaction wheels accepted an analog electrical signal as a torque command from the flight processor, and
emitted an electrical pulse stream whose frequency was proportional to the wheel s eed. In addition, there
were various housekeeping commands which the processor could transmit to the wheels, and there were
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various housekeeping signals which the wheels could transmit to the processor.

The net torque computed by the wheel model was passed along to the attitude dynamics model, which
would compute the wheel angular accelerations relative to the spacecraft. The reaction wheel model would
integrate this acceleration to determine the wheel speed.

The standard AC-100 configuration includes several analog-to-digital inputs, so the input to this model was
quite easy to implement. The output from this model was a pulse stream. While it was not necessary to
control this pulse stream with high accuracy, the pulse stream generator from the gyro subsystem had
already been developed, so it was easiest to simply reuse the rgyro software and hardware with only
changes in a few parameters in the software. Each GPC board could emulate two reaction wheels, so two
additional copies of this board were required to emulate the RWAs. The housekeeping inputs and outputs
of the reaction wheels were not modeled in the PIL.

Thrusters

The MSTI 2 spacecraft included 12 thrusters: 8 low-force thrusters for attitude control and 4 high-force
thrusters for orbit adjust and orbit maintenance. These were simple on-off thrusters, and could not be
throttled for proportional control. The flight processor issued no commands directly to the thrusters.
Instead, the propulsion valves were controlled bK/the processor. A high TTL level signal opened the
valves, and a low TTL level signal closed the valves. There were many housekeeping signals to and from
the spacecraft propulsion system.

The fuel system on the MSTI 2 spacecraft regulated the pressure of the fuel being fed to the thrusters.

The interface board in the flight processor could command a thruster bum duration in increments of 250 us.
These TTL level signals were issued by the on-board software once per 5 Hz. period. The MSTI 2 thrusters
had a very short thrust buildup at the beginning of each thrust pulse, followed by a very short thrust tail-off
at the end of each thrust pulse.

The thruster models in the MSTI 2 PIL were modeled with no thrust buildup or tail-off. The models simply
a;(;PIied a force and a moment on the spacecraft, based on the thrust capability and location of the indi-
vidual thrusters. The forces were summed and passed along to the omit dynamics models, and the
torques were summed and passed along to the attitude dynamics models. The propulsion models did not
include blowdown of the fuel system, because this was a pressure regulated system.

In order to maintain sufficient fidelity of the attitude dynamics, it was decided that the thruster commands
should be captured with a resolution finer than one 80 Hz. period. This required a custom interface board,
the Valve Command Capture (VCC) board. This board sampled the TTL thruster signals at 6 MHz,, and
accumulated the results over each 80 Hz. period. The PIL software would sample the VCC board once per
80 Hz. cycle, and fold the results into the thruster models. 6 MHz. was a much higher sample rate than
required by this simulation, but this high rate was no more difficult to implement than a lower rate.

This board required a short C interface routine, which was handwritten code. This routine did little more

than call the low-level i/O routines sugr)lied by the AC-100, and pass the results along to the block diagram.
This routine was implemented in the block diagram as a User Code Block. _

Attitude Dynamics Models

The MSTI 2 spacecraft was modeled as four interacting rigid bodies: The main spacecraft structure and
three reaction wheels. The main attitude dynamics block diagram is shown in Figure 5. The equations of
motion of these bodies were developed using Kane's method, with the AutoLev software package. Kane's
method allowed the models to include all forces of interest on the bodies, including non-conservative fric-
tional forces and arbitrary actuator forces.

The spacecraft structure was modeled as a rigid body with misalignment of the principal axes of inertia.
The wheels were modeled as axisymmetric bodies with their axis of symmetry aligned with their spin axis.
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The moments and products of inertia of each body were set as parameters in the block diagram.

Using AutoLev, the equations describing the interaction of the bodies was described vectorially, and then
AutoLev automatically generated a complete stand-alone implementation of these equations. One of the
routines which AutoLev generated computes the algebraic relation between (1) the current state of the sys-

tem and the actuator forces and (2) the angular accelerations of the bodies.

Rotational Dynamics Block Diagram
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Figure 5

This routine was extracted from the AutoLev-generated program, and incorporated into the block diagrams
as a User Code Block. The inputs to this routine were (1) the total torque due to the thrusters, (2) the total
torque acting on each of the reaction wheels, (3) The current angular velocity of the spacecraft frame, (4)
the cument angular rate of each wheel, (5) the mass properties of the spacecraft structure, (%\the mass
?roperties of the individual wheels, and (7) the orientation of each wheel in the spacecraft. The outputs
rom this User Code Block were the angular accelerations of the spacecraft structure and the angular
accelerations of the individual wheels.

The angular accelerations were fed into discrete-time integrators to compute the angular rate of the space-
craft and the speed of the wheels. The spacecraft rates were fed into a discrete-time quaternion propagator
to compute the spacecraft attitude.

Orbit Dynamics Models and Sun Ephemeris

These are two high fidelity models which were developed several years ago for other programs. They were
developed as handwritten C source code. Sometime after their original development, they were modified to
be User Code Blocks for use in the SystemBuild environment. Both of these models were used without

338



further modification in the MSTI 2 PIL.

The Orbit dynamics model includes a fifth order
thrusting. Ifs propagator is a fixed-step fourth-o

gravity model, and incorporates accelerations due to

rder Runga-Kutta integrator. The input to the sun ephem-

eris is the time, expressed as year, month, day, hour, mi
the sun location in ECI, accurate to a few arcseconds.

nute, second, and millisecond, and the output is

User Interface

While the PIL is executing, an interface was

with the real-time simulation. This interface
Animation editor, the screens were built up

presented to the user which allowed the operator to interact )
was built under Interactive Animation (IA). Using the Interactive
graphically and connected to the various inputs and outputs of

the block diagram.

Interactive Animation User Interface
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Figure 6

The main executive PIL screen is shown in Figure 6. From this screen, the user could invoke any one of

many different screens at any time.
the PIL simulator real-time, or the us
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With these screens, the user could monitor various intemal variables in
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ing various settings, again in real-time. This capability was used primarily to simulate faults in the
spacecraft, in order to test the response of the on-board software to off-nominal conditions.

A different screen dedicated to each subsystem was included in the Interactive Animation interface. With
each screen dedicated to an actuator, the user could override the commands coming from the flight pro-
cessor and inject his or her own commands. The user could command individual thruster ﬁrin%s, and could
command reaction wheel torques directly. Similarly, with each screen dedicated to a sensor, the user could
override the sensor data computed by the PIL simulation and inject his or her own values. The user could
place the sun in any orientation relative to the spacecraft coordinates, could place the earth in any orienta-
tion relative to the spacecraft coordinates, or could inject any body rates into the gyro models.

Outside of the flight processor, the variables internal to the on-board software are not available to the
spacecraft. In order to keep the PIL a true environment emulator, it also had no access to the variables
internal to the processor. Therefore, the Interactive Animation screens could not present all of the informa-
tion of interest in the spacecraft. Most significantly, the PIL provided no direct method to determine what
attitude control mode the processor was currently using.

Custom Interface Boards

As described above, several custom electronics boards were developed for this project. These boards
were prototyped and debugged by the primary engineer, and the antwork and fabrication was subcontracted
to an electronics design house.

The boards included the GPC board, and the VCC board. The MSTI 2 PIL was implemented on an older
model of the AC-100 which did not have an efficient serial interface, so it was necessary to build a custom
serial interface, the Dual Serial Transmitter (DS'Q. In addition, a simple executive board, the ASBX, was
build to control the interactions of the other boards with the AC-100.

Because the graphical programming environment of SystemBuild provides such rapid software develop-
ment, most of the time spent developing the MSTI 2 PiL went toward hardware development.

Conclusion

By taking maximum advantage of the AC-100 development environment, one engineer spent three months,
with one month of help from a second engineer, to develop a high fidelity spacecraft simulator. This
included all initial design, all mode! development, all software development, the design and development of
four custom electronics boards, integration of the subsystems, and refinement of the system. This was due
g_rimarily to theographical programming environment of SystemBuild, along with the code generation capa-

ility of AL(J)th e. Another prime factor in this success was the ability of the AC-100 system to reuse
existing code.

By spending very little time on software development, the engineer was allowed to focus on the more diffi-
cult task of hardware development.
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